

ATA Advanced Technique of Artificial Intelligence


Multi-Granularity Semantic Aware Graph Model for Reducing Position Bias in Emotion-Cause Pair Extraction

Multi-Granularity Semantic Aware Graph Model for Reducing Position Bias in Emotion-Cause Pair Extraction

Yinan Bao^{1,2}, Qianwen Ma^{1,2}, Lingwei Wei^{1,2}, Wei Zhou^{1,*} and Songlin Hu^{1,2} ¹Institute of Information Engineering, Chinese Academy of Sciences ²School of Cyber Security, University of Chinese Academy of Sciences {baoyinan, maqianwen, weilingwei, zhouwei, husonglin}@iie.ac.cn

2022. 04. 17 • ChongQing

2022 ACL

Code: None

mtettigence

NATURAL LANGUAGE PROCESSING

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

Example. When the driver was about to start the bus to leave the station (c_1) , an old lady ran to the front of the bus with a fast speed and sat down on the ground (c_2) . Passengers standing in the front of the bus can see this scene clearly (c_3) . Seeing this scene (c_4) , the passengers in the car immediately became restless (c_5) , and had a heated debate (c_6) . Some of the passengers were **angry** (c_7) , and told the driver he shouldn't be meddlesome (c_8) .

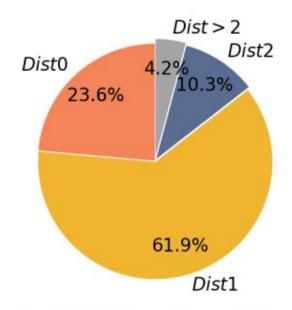


Figure 1: The distribution of the relative distance of an emotion clause and a cause clause that comprise a pair in the ECPE dataset (Xia and Ding, 2019). Dist0, Dist1, and Dist2 mean the relative distances between the two clauses are 0, 1, and 2 respectively. Dist > 2 means the relative distances are larger than 2.

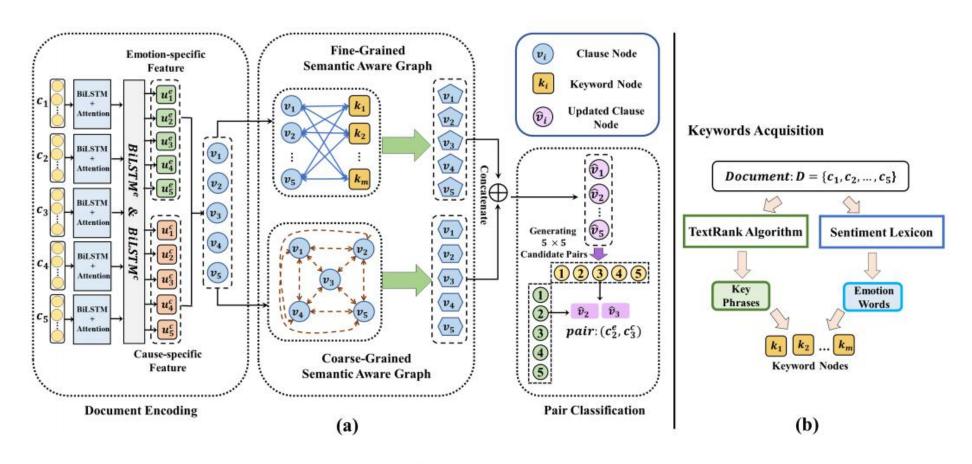
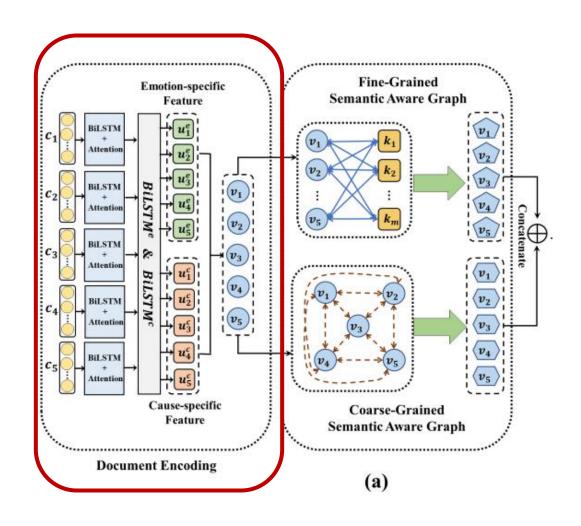



Figure 2: (a) shows an overview of MGSAG. (b) shows the process of keywords acquisition.

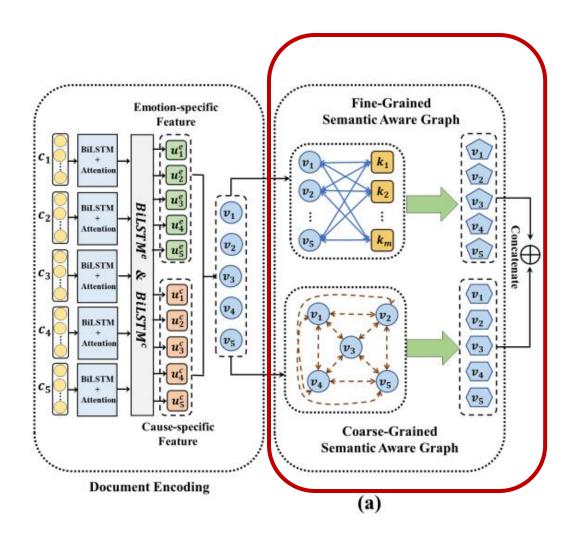
Word-Level Encoder

For each clause
$$c_i = \{w_1^i, w_2^i, ..., w_{|c_i|}^i\}$$

$$(h_1^i, h_2^i, ..., h_{|c_i|}^i)$$

$$\mathbf{h}_i = \sum_{j=1}^{|c_i|} \alpha_j h_j^i \qquad \alpha_j = \mathbf{softmax}(\mathbf{W}_a h_j^i)$$

Clause-Level Encoder


$$\mathbf{u}_{i}^{e} = \mathbf{BiLSTM}^{e}(\mathbf{h}_{i}), \mathbf{u}_{i}^{c} = \mathbf{BiLSTM}^{c}(\mathbf{h}_{i}),$$
 (1)

$$\mathbf{g}_{i} = \sigma(\mathbf{W}_{g}\mathbf{u}_{i}^{e} + \mathbf{b}_{g}),$$

$$\mathbf{v}_{i} = \mathbf{g}_{i}\mathbf{u}_{i}^{c} + (1 - \mathbf{g}_{i})\mathbf{u}_{i}^{e},$$
(2)

$$\hat{\mathbf{y}}_{i}^{e} = \operatorname{softmax}(\mathbf{W}_{e}\mathbf{u}_{i}^{e} + \mathbf{b}_{e}),$$

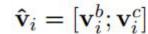
$$\hat{\mathbf{y}}_{i}^{c} = \operatorname{softmax}(\mathbf{W}_{c}\mathbf{u}_{i}^{c} + \mathbf{b}_{c}),$$
(3)

Fine-Grained Semantic Aware Graph

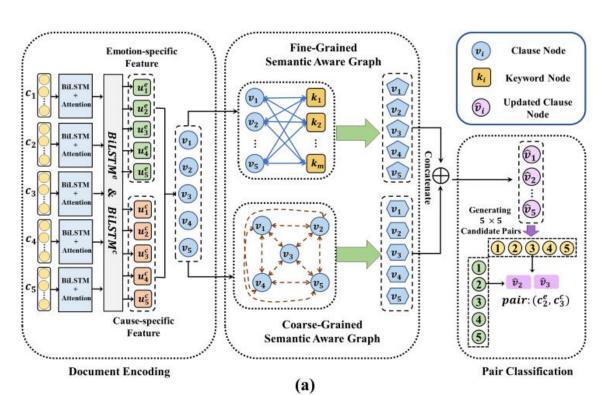
$$\alpha_{ij} = \frac{\exp(w^{\top}[\mathbf{W}_1 \mathbf{v}_i; \mathbf{W}_2 \mathbf{k}_j])}{\sum_{t=1}^{|D|} \exp(w^{\top}[\mathbf{W}_1 \mathbf{v}_t; \mathbf{W}_2 \mathbf{k}_j])}, \quad (4)$$

$$\mathbf{v}_{i}^{b} = \mathbf{tanh}((\mathbf{v}_{i} + \sum_{j=1}^{m} (\alpha_{ij}(\sum_{t=1}^{|D|} \alpha_{tj}\mathbf{W}_{3}\mathbf{v}_{t}))) + \mathbf{b}),$$
(5)

Coarse-Grained Semantic Aware Graph


$$\mathbf{v}_{i}^{(t)} = \mathbf{ReLU} \left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij}^{(t)} \mathbf{W}_{1}^{(t)} \mathbf{v}_{j}^{(t-1)} + \mathbf{b}^{(t)} \right),$$

$$(6)$$


$$e_{ij}^{(t)} = w^{(t)^{\top}} \mathbf{tanh} \left(\left[\mathbf{W}_{2}^{(t)} \mathbf{v}_{i}^{(t-1)} ; \mathbf{W}_{3}^{(t)} \mathbf{v}_{j}^{(t-1)} \right] \right),$$

$$\alpha_{ij}^{(t)} = \frac{\exp(\mathbf{LeakyReLU}(e_{ij}^{(t)}))}{\sum_{k \in \mathcal{N}(i)} \exp(\mathbf{LeakyReLU}(e_{ik}^{(t)}))},$$

$$(7)$$

Emotion Cause Pair Extraction

$$\hat{\mathbf{p}}_{ij} = \mathbf{softmax}(\mathbf{W}_p^{\top} \mathbf{v}_{ij}^p + \mathbf{b}_p), \qquad (8)$$

$$\mathcal{L} = \mathcal{L}_{pair} + \mathcal{L}_{emo} + \mathcal{L}_{cau} \,. \tag{9}$$

Emotion Extraction and Cause Extraction

$$\hat{\mathbf{E}}_{i} = \begin{cases} 1, & if \sum_{j=1}^{|D|} (\hat{\mathbf{E}} \hat{\mathbf{C}}_{ij}) > 0 \\ 0, & otherwise \end{cases} . (10)$$

Cotegory	Model	Emotion Ext.		Cause Ext.			EC Pair Ext.			
Category		P	R	F_1	P	R	F_1	P	R	F_1
Position-insensitive Baselines	Indep	0.8375	0.8071	0.8210	0.6902	0.5673	0.6205	0.6832	0.5082	0.5818
	Inter-CE	0.8494	0.8122	0.8300	0.6809	0.5634	0.6151	0.6902	0.5135	0.5901
	Inter-EC	0.8364	0.8107	0.8230	0.7041	0.6083	0.6507	0.6721	0.5705	0.6128
	IE-CNN	0.8614	0.7811	0.8188	0.7348	0.5841	0.6496	0.7149	0.6279	0.6686
Position-sensitive Baselines	PairGCN	0.8587	0.7208	0.7829	0.7283	0.5953	0.6541	0.6999	0.5779	0.6321
	ECPE-2D	0.8512	0.8220	0.8358	0.7272	0.6298	0.6738	0.6960	0.6118	0.6496
	SLSN-U	0.8406	0.7980	0.8181	0.6992	0.6588	0.6778	0.6836	0.6291	0.6545
	RankCP	0.8703	0.8406	0.8548	0.6927	0.6743	0.6824	0.6698	0.6546	0.6610
	ECPE-MLL	0.8582	0.8429	0.8500	0.7248	0.6702	0.6950	0.7090	0.6441	0.6740
Our Model	MGSAG	0.8721	0.7911	0.8287	0.7510	0.6713	0.7080	0.7243	0.6507	0.6846

Table 1: Comparison of varying approaches on the original test set $(Test_{all})$.

Model	$Test_{Bias}$	$Test_{NoBias}$	
Inter-EC	0.6783	0.3318	
IE-CNN	0.7666	0.3484	
PairGCN	0.7246	0.3355	
ECPE-2D	0.7590	0.3830	
SLSN-U	0.7456	0.3978	
RankCP	0.7467	0.3857	
ECPE-MLL	0.7673	0.3988	
MGSAG	0.7730	0.4301	

Table 2: F_1 results of varying approaches on $Test_{Bias}$ and $Test_{NoBias}$, focusing on EC Pair Ext.

Model	$ Test_{Bias} $	$Test_{NoBias}$	$ Test_{all} $
w/o FGSAG	0.7594	0.3894	0.6519
w/o CGSAG	0.7654	0.4027	0.6529
w/o FGSAG+CGSAG	0.7264	0.3269	0.6242
MGSAG	0.7730	0.4301	0.6846

Table 3: F_1 results of ablation study on $Test_{Bias}$, $Test_{NoBias}$, and $Test_{all}$, focusing on EC Pair Ext.

Loss Function	P	R	F_1	
\mathcal{L}_{pair}	0.6940	0.6533	0.6720	
$\mathcal{L}_{pair} + \mathcal{L}_{emo} + \mathcal{L}_{cau}$	0.7243	0.6507	0.6846	

Table 4: Comparison of different supervised signals for our method.

Model	$Test_{Bias}$	$Test_{NoBias}$	Testall
w/ RW	0.7596	0.4078	0.6674
w/o EW	0.7669	0.3920	0.6686
w/o TW	0.7658	0.4271	0.6771
MGSAG	0.7730	0.4301	0.6846

Table 5: Comparative F_1 results on $Test_{Bias}$, $Test_{NoBias}$, and $Test_{all}$ of our variant models, focusing on EC Pair Ext. "w/ RW" means using random embeddings for keyword feature initialization. "w/o EW" and "w/o TW" means removing emotion words and key phrases obtained by TextRank, respectively.

- (c₁) When Mr. Chen drove from south to north on Yangtze River Avenue,
- (c_2) it was dark and there was no street lamp.
- (c_3) His slight was not clear.
- (c_4) He ran into a stone and overturned.
- (c_5) After that,
- (c_6) he was trapped in the car,
- (c_7) broke the window glass,
- (c_8) and climbed out of the car.
- (c_0) He said that,
- (c_{10}) because of the sudden incident,
- (c11) he was shocked and injured.

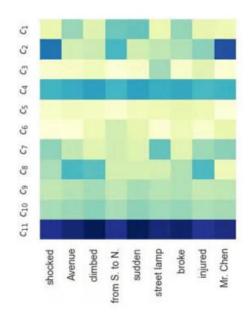


Figure 4: An example that MGSAG extracts the emotion cause pair (c_{11}, c_4) correctly, while ECPE-MLL fails. Words shaded in yellow are keywords. The heatmap presents attention scores in the clause-keyword bipartite graph. Rows of c_{11} and c_4 are the top-two darkest rows, means that keywords pay more attention to them and facilitate MGSAG to extract pair (c_{11}, c_4) correctly.

Thank you!

